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1. INTROD'ICTION 

As the importance 1-f d i g i t a l  electronics continues =o grow 

so too does the need for  computer-aided a n a l y s i s  of t he  highly 

nonl inear  networks t h a t  are t y p i c a l  of cu r ren t  pu lse  and d i g i t a l  

c i r c u i t  technology. 

I n  p r inc ip l e  the time domain ana lys i s  of nonl inear  networks i s  

simply a matter of solving a set of simultaneous nonl inear  d i f f e r -  

e n t i a l  equat ions;  presumably a rout ine task f o r  a d i g i t a l  computer. 

A s  we s h a l l  show, however, there are c e r t a i n  c h a r a c t e r i s t i c s  of 

the types of networks mentioned above which pose some special 

d i f f i c u l t i e s  not normally encountered i n  o the r  areas of appl ica t ion  

Some of these d i f f i c u l t i e s  manif est  themselves i n  t h e  formulation 

of t h e  equat ions of t h e  networks and others appear i n  in t eg ra t ing  

these equat ions.  Furthermore when one at tempts  t o  circumvent 

d i f f i c u l t i e s  a t  one s t age ,  they of ten  reappear la ter  i n  a d i f f e r e n t  

guise. 

The purpose of this paper is to prsseiit ~ c x i p u t a t i c ~ a l  

technique which avoids certain problems commonly encountered i n  

e x i s t i n g  methods. 

has been described i n  an ear l ie r  paper. [l]) I n  Sect ion p, w e  il- 

lustrate  the general  c h a r a c t e r i s t i c s  of a computer-based approach 

(Much of the theo re t i ca l  basis f o r  t h i s  technique 
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rmre suitable .  Let us observe the consequences cf each af these 

choices in impleraentfng step g 2) equation formularion ., 

'Ihe state variable formulation of the network equations is i-h? 

obvious choice 5n a computer-based analysiso Severdl ~ F P  or fes;s 

equivalent methods of deriving these equations are avai lable . .  [ Z ?  

3, 4 J  Considering f%rst, the l o w  frequency transfsxor mode;. and 

choosing the charges x1 and x 2  an capacitors C1 and C! resprctive1.v 2 
as sta te  variables, we obtain the following equations 



x = f ( t ,  xo u) Q2a) 

0 = m!, xs u3 (2BB 

where x represents a set of n state  variables, u a ser of 

k auxiliary variable8, (2a) a set of n first order dffferent%sl  

eqyatfons and (2b) a set of k constraint equarfons. 

If we were t o  use the high frequency transistor lsOde~ [ h t m -  

duciag the additional cepacftances shown dotted in Fig. 3:$ Eq $, 13 

would be modiffed to the form 

= fp’ m) g Sa) 

i2 = fa(xs  u) [ 51i) 

1 

Note that the only difference between E q .  ( 2 )  based on the 

low frequency model and Eq.  (3) based on the high frequency mdeL 

fs that the auxi l iary variables have now become state variables 

end the constraint relations; have now become differential eqraatlow, 

The consequences of the two alternative choices of trawjahr:* 

model become a p p a m t  in attempting to solve the network ecpat~orlis - 

Consider Pirst, the general constrained form ( 2 )  which reswlts f .wn 
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the low frequency model 

by standard numerical methods, an obvious approach would 'De t o  3~ 

tempt to eliminate the constraints by solving Q2b) for  

Since these equations cannot be rirteg ('3 I 

u = hQt, x9 ( B Q  

and substituting (4> into (2a) to gPve 

0 

x = f[t, x ,  h[ts x ) ]  

which is in the normal state variable form 

x = F[t, x) Q 5 )  

If this operatfan can be performed uniquely (that as, if a wdqw 

solurion ( 4 )  of the constraint equations e x i s t s ]  mad if '.!w 7.e 

sultant differenteal equations possess unfque solutions cki f .wd I 3 

the future for a l l  irti-ctal stateso we shall. say that the . k e t : ~ ~ ~ ' : r  

equattons are determinateo - Otherwise they shall be called h- 

determinate, The stion of d e t e m h w y  of the network q: .aaPiws 

is ce lysis problem, computer-based or othew;se 

for unless the equations are determinate it i s  doubtful wher-her: 

they have any meaningful physical interpretation. The c i - ~  of : f . ?  

pmblem of determinacy lSes in the form of the constraint- equarkms 

(2b)- Regardfng these we must ask: 

a) 'Does a unique solutfon of the form ( 4 )  exist:' 

b) If so9 how can it be eroaputed? 

c )  If noto how can the network be analyzed? 

&Pdrntng to  our example a l i t t le  thought w i l l .  Snd3cart. em c. 

E t  as impossible to know whether a unique solution of Eq 

exists Qmuch less hcu to ampute it) without k r m d n j  the n t i ~  ;'I>=.. 

vahes of the various parameters  involved^ Noreover., it t s  i d s - i i -  

Xrmm chat the combinations of yarameers whnch lead to p f i ~ : ? ~ h j -  

( le-f 1 
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multivibrator actfon are just those whfch lead to mult ip le  s o h t  l~~aas 

of the constraint equatfons. 

thfs c ircuit  therefore necessarily leads to indeterminate eqmt%oxs. 

(However, it is w e l l  to recall that this  is the mode1 genesally em- 

ployed fn -st non-conrputer-based analyses of the multivfbrator - 3 

2% low fFequency transistor =<;el 

On the other hand, cbosing the hfgh frequency transistor 

model we obtain an unconstrafned system, albeit  one of higher order2 

and thus the guestion of determinacy does not arfse Ti might 

therefore appear that it fs always desirable to choose a network 

&el fn which the problem of constraints does not occur?. Tiis, 

1 

in fact ,  is  one fairly caennn approach used in  computer-bssed 

analysfs 

this ehoicc a b i t  further. 

taransfstor capacftances, it m u l d  not be unusual for the time 

constaw& - gS&iated wlth these capacitances to be of the order 

of nanoseconds whfle the period of the arultivfimtor might be 0% 

the order of millfsesonds. 

solution is to be computed may be of the order of 106 times the 

shortest rime constant in the system, 

(See Sectfon 3 -1 L e t  us  explore the conseqiusnws QS 

Considering realistic values of the 

- 

Thus, the time period over whfch a 

Systems of dffferent5al 

equations having this pmperty have hen termed v'stfffw systems. 

E51 Now, to avoid numerical instability, the stepsize in rawmerf- 

cal integration schemes must genemlly be kept considerably 

smaller rMn ishe siaortest the c r i ~ s t a n t ~  %%erefme9 stiff systess 

genepally dearand extremely large numbers of integratton stepss 

and can over-tax the eapabflftfes of the fastest computerso 

cause convent%onal numerical integra tfon mutlnes cannot cope 

Be- 

A system of the form ( 5 )  can also be indeteminare if its  right- 
hand s i d e  does not posdess certafn smoothness and bsundedncss 
properties However, this  t y p e  of indeterminacy normally does 
not  occvr in models of physical systems.. 
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with stiff sy~tems in an Q f f i C i z R t  manner, and bscairse s ~ t c r i  ; y  

are ChdraCteriStk of nonlinear  electronic problens 

effort has recently been devoted to t h i s  subject. [6-104 Attho~\.!~i  

pmgress has been made fn developing algorithms especially s::~nlt~S 

to these systemso the problem mmhs d t f f i c u l t ,  

con ;fdt-?&..: ,: 

To recapitulate, we have ilJsrstrated by means of the es;r-mpl? 

of the mltiv%brator, t'hat in the case of highly rto;nlEnca;* r&wo&s. 

cicpndfng upon the type of model chosen, one generally ~I;ra . i ;ns  a 

formulation egther In t e r n  of constrained d i f f erent ia l  eq~i&trons 

or s t i f f  systems of differential  equations. Each of these a l e t 7 ; ~ ~ ~ -  

t l v e s  presents special problems a t  the final stage of the t w ~ a l y s i s ~  



shown to exist  although it cannot necessarfly be exg~essec! +pi CJ.G ,.: t 

We shall now classify a representative sample of cx.l%i-ir;-J 

?laced on the € ~ n m  of these equarions, 





, 

solutions or i f  the fteration fails to  converge. 

l.fkelihood of erroneous resul ts  i n  type (D) programs fs ranslfder- 

ably smaller than i n  type (C) programs. 

t3Dweverf tt-:e 

4 o  THE MEIRK)D OF AUGMDdTATION 

We present fr t h i s  section a method of analysfs whfu5 aw~- l , l s  

the t w i n  problems of elfarinathg nonlhear eonstm%xs and c f  

solving stiff systems of differential  equations. ~t fs t~algicc: dm 

tatfon of the network adel with elements of b,f fn%t.F~l*bAl l  . rrugfflen 

small values. 
I - -  -.-.-.- 4. d* ...- *- 

!Che discussion well be divided into three parts: 

Fomulatfon of the network equations 

Augnentatbn of the netklork -del 

Nuuerical solution of the auguented equations 

4,1 EQwtbn  FolrPwrlatfon. Let the network be descrfbed by a 

connected graph G 3.n which each branch fs class%ffed as efther 

Sndependent voltage sowee (V), capacitive [C) 

hductive (L) or independent current w m c e  [J)- 

assumed that: 

~4 t~ f s t fve  (R)) + 

Tt will Fw 

1) me terminal characteristics of a l l  capacitive braml~es 

given in the "charge-control2ed" form: 





-12- 

ar411 be termed nonlinear even though the i r  terminal relat ions may 

be linear.) 

except a ' s .  

based on the way the terminal relations are given, even though it 

may be possible t o  express them i n  other forms.) 

Coupling is permitted among a l l  resistive branches 

(Note t h a t  the  classifications VCNR and CCNR are 

4) There are no loops consisting of voltage sources only 

or of voltage sources and sptpacitors only, nor cutsets  consisting 

of current sources only or current sources and inductors. 

(Certain of these ascrumptions were made merely t o  simplify 

the exposition. 

relaxed without any radical change i n  the resu l t s  which follow.) 

For example, assumption (4) could be par t ia l ly  

The network equations are obtained by appropriately combining 

the terminal relat ions (6,7,8) with the Kirchhoff l a w  constraints 

defined by the graph G. We begin by selecting a If proper t reen ,  

defined t o  be one whose elements are chosen i n  the following order 

of pr ior i ty:  

sources, VCM' s , LPR' s, CCNR' s , independent current sources, 

nonlinear inductors, LPL' S. 

a re  chosen as cutset  charges q and loop f lux linkages A .  

there are no all-capacitor h p s  and no a l l  inductor cutsets,  each 

capacitor charge and inductor flux-lindage consti tutes a s t a t e  

variable. 

of these charges and f lux linkages. 

LPC's, nonlinear capacitors, independent voltage 

Following c11 the state variables 

When 

Otherwise the state variables are l inear  combinations 

(See Appendix. j 

With respect t o  any proper t r e e  T, w e  define cer ta in  "excessrt 

elements', associating with each excess element an "auxiliary 

Our usage of the  term rrexcessfr i s  somewhat different  from t ha t  
C O T n l y  appearing i n  the l i t e ra ture ,  

, 

\ 
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variable" as .follows: 

Excess elements Auxiliary variables 

All nonlinear capacitive chords of T charges QC 

All nonlinear inductfve branches of T f lux linkages A$ 

Y A l l  V C N R  branches of T voltages e 

AU. C C N R  chords of T currents i, 

b t e  that for an element to be excess it must be nonlinear and 

ft must appesr a certrfn topohgical  configuration. (For example, 
Qs add 

a nonlinear capacitor w l d  be excess i f  and only i f  it occurrcd,,in an 

all-capacitor loop .) 

It is 

operations 

Note that Eqls - (9) are fn the general canonical form (2) 'fie 

state variables are x = (q, A), the auxiliary variables, u = 

(s, 
as there are auxiliary variables. In fact, there is a one-one 

correspondence betareen c o n s t r a h t  equations and excess elements- 

A derivation and explfcft representation of the functions f and 

9 

e iz), and there are exactly as aany constraint  equations 
Y 

h (99 is presented i n  the Appendix, It 5s worth noting t h a t  



4 - 2 Augmentation: 

As was pointed c , i t  previausly, the constrained cqulatlons (9) 

are not in a form suitable for numerical frtegratton. Pmthc>r"wre, 

in the general casep the= w f l i  be no systematic way of e 3 W h a t h g  

the constraints and the auxiliary variables. Therefore, to avo%d 

the problem of constraints we shall e n t  - the original r:em-irk 

by insertiny a number of "stmyq network elements of *I- infiniteTiPmizIlv -.,. .. --...-_ 
I 1 

augmmtatian w i l l  be performed in such a v4.p a s  

lieit constraint equation to a dffferentfak 

equation. The procedure is fllustrated in F i g o  S o  We Frtserr 

exactly as laany a u w t f i r g  elements as there are "excess'' elements 

%n the orfginal network. Each of the four classes of excess elenents 

requires a dffferent type of augmentatton. 

V C N R ' s  w i l l  be taken as an fllustratfve exampleo 

F i g o  5, each excess WC NR is augmented by a stray capcftanc;r! of 

arbftrarfiy smzj. positive vairie C .  &A%J&*6 c*-- G E w f i t S t i G f i  t@r- 

a h a 1  characterfstfc of the element is of the form i 

that is, the current f 

voltage e 

the capacitance (D the terminal relation becomes 

The case of the excess 

As shown ia 

e u.4:u, Y 
through the element may depend on its am 

After addit ion of 

= f ( - .  
Y Y  

Y 
as  well as various other variables. 

Y 

I 
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Thus, i f  we now l e t  i and e be vectors representing respec- 

Y Y 
t ive ly  the  currents and voltages on a l l  excess VC N R 9 s  then the 

ef fec t  of the augmatatian is to add a term of the form e 6 Y 
a l l  equations i n  which the cumtents f appear. It can be seen from 

~ q .  (A-9e) that these currents appear i n  (and o n l y  in9 Eq. (gel, so 

Y 
that the net result of this augarentatfon is to add the term e 

to the left-hand side of Eq. (9e9 converting it to  a d i f f e ren t i a l  

equation. Similar reasoning follows for the other three types of 

augmentation i l l u s t ~ t e d  in Fig. 5. The end r e su l t  is that the 

to 

Y 

constraint  equatfons (9c-f) are IKZW converted t o  the following 

d i f f e m n t i a l  

Mte that the order of the augmented systen is equal to the order 

of the unaugmented system plus the number of excess elements., The 

augmentation with s-11 s t r ay  elements described in Fig. 5 can be 

view& as a physfcal justification for the conversfon of Eq. (9c-€1 

to the h r a a  (10). However, once the procedure is understood, there 

ts no need to in te rpre t  it i n  terms of network modification. me 
%-hiply ident i f ies  the excess elements formulates the c o n s t r a b t s  

and adds tne appropriate terms to the constraint  equationso The 

Î  -*-- - 
I- It has been sbm [l] t ha t  When no coupling i s  present% the aug- 

mentatfan procedure described i s  m f n f n r a l  in the sense that the 
number of augmenting elements I s  the l e a s t  possible t ha t  wfll 
elfiafnate the constraints.  
me sometimes required t o  produce a mfiajiaral augmentation. 

When couplhg is present other methods 
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canonical form (2) i s  thus changed by augmentation to  

x = f(t, x, u) (1ld 

8 u = g(to x ,  u) d u b )  

Returning to the example of the multivibrator, we find %hat 

the four dependent current sources (VC NR's)  are all excess. The 

left-hand side of the constraint equations (IC-f) associated with 

these elements must therefore be augmented by the respectfve terms 

e uSs a u4* 6 us, a u6" Note that these terms correspond phy.sically 

to  the insertion of small capacitances of value 

the excess elements. 

ident ica l  to Eqs. (3) which were derived using the high frequency 

t rans is tor  model. 

t o  the t rans is tor  capacitances. ) 

. * 

Q across each of 

The resultant equations a re  therefore almost 

(The only differences are the values a s s t p e d  

The principal jus t i f ica t ion  for the augerentation procedure 

outlined above is the fact that every physical network elenent has 

associated with it some nstrayw or "parasftic" energy storage OF 

dissipat ion which is usually neglected i n  its mathematfcal model, 

Therefore our auglnented network model should be a more reellsric 

representation of the true behavior of the physical network than 

is the constrained d e l .  (More w i l l  be said on th i s  subject in 

I 

1 
I 

1 Section 6.) The idea of augmentation is, of coursep not new;: it 
I 2s comglonly used to explain the discontinuous behavior of mny 

types of nonlinear osc i l la tors  of the nrelaxatfonr type. 

4.3 Numerical Solution of the  Ausmented Equations. We must :low 

I 
I 

m l a t e  some solution oE the augmented system (11) t o  the beh.avfor 

of the  physical system originally descrfbed by (2) e Since the 

I 
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parameter e was not even present in the or iginal  network model, 

it is reasonable to  attearpt to minimize the differences between 

(11) and (2) by considering the limiting behavior of (11) as s e Ot 

as a " t rue"  representation of the physical network. Thus, f f  

[x(t, u ) ,  u( t9  s) l  represents Q solution of (11) fo r  e > 0 ,  we 

attempt to  determine the lfppitbg solution, 

[Xo(t),  U o ( t ) l  = tx(tg 6 )  u(ts U P 1  (12) 
840i 

A t  this poht we shall assume that a limiting solution (xo, uo) 

exists for which x has a piecewise continuous derivative and u 

fs pieemvise C0Atin~OU8 . (Although systeas of the form (11) have 

been the subject of considerable study, mainly in the Soviet 

literature [16, 17J, conditions under vhich the abow assumption f a  

val id  have not been deterrrirted in the general case. 

xwnarks on this question see Section 6.) 

For fur ther  

Note that (12) represents, in effect ,  a solution of an fn- 

f i n i t e l y  s t i f f  system. From our previous reavrrks (Section 2) one 

might conclude that this would require in f in i t e  computation time. 

As we shall see, however, it is usually easier t o  f i tegra te  an in- 

f i n i t e l y  stiff system than one wi th  finite s t i f fness .  

Xn computing the L%llleting solutfon, we simulate the effect of 

f i f in i ta  s t i f fness  as follows: 

L e t  ($, %j r q r e s t n t  tb cwapute~ vs>uts ef co> g+ +he 

k-th time in te rva l .  

fary variables u w e  bffnitely fa s t e r  than the s t a t e  variables 

x 

and replace (llb) a t  the k-th t i m e  in te rva l  by the "fast equatfons" 

Noting that in the 1-t as e - 01- the auxfl- 

(except when g = 0) we sha l l  call (lla) the %low equationsTty 





The c i r c u i t  parameters were as foLlows: (Units: Volts, a, kir, p ~ )  

Rt, = 0.6 

R = 6  

E = 10 

C, = C2 = C [varied) 

Xn order to observe the effect of the stfffness of Eq, ( 3 )  an 

the efficiency of. the consputatton, the  timfng capacitor Cr and hence 

the period of the mu-ltivibrator, was vampied as shown in Table 1. 

Sfice the smallest time constant fn the circuit 5s determined by 

the transfs 

sfice the total solution time as proportfonel t~ C the hrelct%ve 

stiffnessTT of the equatfons fs proportional to C as Xndieated in 

s, CE, which were not mdif5ed,  and 
I 'PP 
I 

1 Table 1. 

I 

I 

I A computer-generated plot of collector voltage f ~ r  a typical  I 
run (C 200 pF] is shown in Fig. 7.  Shce the transistor switch- 

%nag time (based on the hfgh frequency model) fs about 6 nanoi,eccndsr 1 
I 
~ the  waveform appears to have sharp discont inui t ies=  On a plot of 

I th i s  type, the results of the two different  computational methods 
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function evaluations (WE) required in each case. 

measure of required computation the.) 

WE's for each case studied. 

of - one equation is  considered to be one function evaluation.) X t  

can be seen f r o m  the table that the NF€ bcreases roughly in pro- 

partion to the relative stfffness of the system when conventioml 

-Integration is used. On the other hand, using the method discussed 

herein, the IVFE 5s effectively Wependent of the stfffness of the 

system, resulting in a dramatic increase in ef f ic iency  for the 

larger values of C. 

still mom impressive gains in computation t h  for systems ~f 

larger stff fness 

(This is a fair 

Table 1 gives appraxbwe 

(One evaluation of the righthand s i d e  

These results can be extrapolated to s k w  

e 50 200 500 

Tfme interial 750 ns 3000 7500 

4 

W E  [Our method) 

Table 1 

6 -  CONCLUSXONS: 

We have presented a new conputattonal method of analyzing non- 

The methodl was designed to linear networks on a digital computer, 

avoid the twin problems of solvfrg constraint equations and/or 

htegratfig stiff s y s t w  of differential equationso 

useful features are: 

Some of its 

I) It can be applied whether OP not the origfipal network con-= 

s trafnt egua tions are unfquely solvable When mult5gle solutions 
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of the constraint eqpatfons exist, the procedure w i l l  automatically 

seek tRe one which is "correctrr on physical grounds, [Subject to 

certain qpalffications stated below,) 

2) It is especfally useful in computing discontinuous setlut%ona, 

(Discontinuities OP "jump phenomenan often occur fn cases where the 

original nettrfodc laode1 fs indetermfiate, and are character is t ic  ob 

the operation of many types of pulse and digital circufts .) 
3) It avoids the numericalproblen\s associated with s t i f f  

systems of d f f f e m n t i a l  eqwtions8 

4) In  cases where one i s  only concerned with gross features 

of netmrk behavior it of fers  a convenient means of neglecting 

"high frequency" e f fec ts  

The development of this  method is sti l l  a t  a preliminary 

stage and many open questions remain. One question fs that of the 

existence of the lfmitfns solution (12). For the complex system 

to  which 

predfcting the existence and propertie8 of the lirnftfng solutions. 

A related question, on which almost no mrk has been done, concerns 

the validPty of the proposed nmerfcal computational sc- fn 

cases where the limiting solution is horn to existo UtbugR 

empirical r e su l t s  look proraisfigo it would be useful to  study the 

properties of the computational algorithm from a theoretical p o h t  

of vfew. 

tadt there 5s 1 ~ )  general way 05 

Perhaps the most df f f fcu l t  question, however, pertains tc the 

just$ffcat5on of the metlhod of augmentation on physical gmuadso 

Clearly an inftraite varfety of aupentat%r,s are possibh for any 

network. Stray elements (both lumped a d  dfstributed) of any rela- 

tive values can be inserted throughout the mdel to account for all 
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o f  the mechanisms of energy loss and energy stomgee In view of 

the fact that the chosen augmmtatfon f 8  somewhat arbitrary, how 

can one be sure whether a l l  or only some of the various pxsfble 

alternative augmentations will accurately reflect the behasP-Eor of 

the physhal system under study? In certain simple cases i t  is 

pssBle to prove that a l l  poss%ble augmentations wfthfn 

class have essentially the same behavforo C183 However it 

seems unlikely that this can be done in the general ease 

of coursep possible that the behavior of the mathematScal mdel 

wil l  indeed be sens f t iw  to the type of augmentation chosens and 

in fact, that limiting solutions may not e x i s t  for sone ttypes of 

augmentations. For exmple, oscfllatiorw may OCCUF in t3.3) leading 

given 

Xt isg 

to the wn-existence of a steady state  

existence of a lfmiting solutfon. The 

w f l l  fag1 in this case. However, thfs 

of the fact that the physical system being uiodelked sunst d8spJay 

the sme sensftivity to relat3,ve values of its "stray" pwametmzs0 

FaiXure of the computational scheme may therefore be taken as a 

warning of some sort of structural b s t a b i l i t y  of the system under 

studyo Further pursuit of thfs qpestfon would lead us b.to a 

general discussion of the philosophy of mathematical modellimry. 

Sjbnce this muld not be appropriate hem, we shall close with the 

- - - - h a - -  * ~ - c  r s m n a n ~ . a + n t t ~  3earur.Qnepri d + h  +he valfdfty iaf  he aaaI=cLIwa t.110~ OU.Y wcbb.L ru-.az ---------- - _ _ _ -  

augmented model is no W P S ~  than that assochted with the arkfg$mJ. 

W U w n t e d  mde!lo 
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Appendix 

Derivation of the Augmented Network Equations 

A . l  Partitioninq of Varfables 

Subject to the assumptions of Section 4@ a fundamental 

loop matrix Bf based on any proper tree T w i l l .  take the foza 

91 h 

t 

CI,F] 
1 

where the 1’s represent identity rnatrfces of appropriate size and 

the empty partititions of Bf correspond to zero submatriceso gEI t  

can be shown that the pdor i ty  ordering of elements of T always 

leads tc a m t r i x  R of this fam. 

partttfond into the sets e ,  c o  L, defined as follows: 

Tplc rows and c o l m s  crf’ Be are -f A 



c - LPC 
) Capacitors 0- Nonlinear / 

y { - V C N R  
C - L P R  

I 
} Resistors 

@- C C N R  I 
J - Independent current wurees 

p Y -Nonlinear \ 1 Inductors 

Of T 

....................................... _- ....-.......... ............................... ............................................................ 
j Capacitors 

i Q{ s - #onlinear I 
V - Independent voltage sources Branches of T 

0- VC N R  

Resistars 1 
I 

R - L P R  

Z {  r - C C N R  

(The circled symbols indicate excess elements] 

The fundamental 

and Mfrchbff's laws are 

cutset matrix (& is derived f m m  B,: 

where eN and iN represent the apgroprfately 

and currents respectively. 

of Bf and % as 

ordered branch voltages 



A3 

A.2 The Constrained Netwrk Equations 

In w h a t  follows we indicate variables associated with 

For ex- various subsets of elements by approprfate subscripts. 

ample, Ad is a vector (column matrix) whose elements are the 

flux linkages in  each nonlinear tree branch inductoro 

Subject to the above method of partitioning we rewrite 

the element terminal relations given in (61, (79, (83 as follows: 

(For emnomy of notation the aqument t wlll be om$tted fmm 

a l l  functions.) 

Capacitive elements : 

eS 

Inductive elements: 

fr 
4 

Independent sources : 

i “ J ,  e V = V  J 

(A-3a) 

(A-3b) 

Q A - 4 3 )  

Q A-4b) 
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The state variables x = (q, I ) ,  are defined as the cut- 

set charges, 

and loop flux linkages 

The auxiliary vareables a r e  

u = [ a  A * -  e 3 . 9  I A - 8 9  T 49' y z- 

F m m  the Kirchhoff law relations implied by (A-1)  and (A-29 

we obtain the followfng canonical form of the network equations: 

(A-9a) 

QA-9b) 

(A-9c 1 

[ A-9d) 

( A-9e 1 

(A-9f) 

a l l  

represent state  or auxiliary varfables. me upper. case quantities 

5. Ez, IA, E , E 
of the state and auxfliary variables defined as follows: 

I,, Iyr E, a l l  represent explicft  funztions Q c  



(SN is positive definite,  q1 %s of the dimension of qs9 and % 
of the dimension of %.) 

Then, combinfng Mfrchhoff's laws with (&la) and (A-3) 

and eliminating the linear terminal relations (A-3a) we obtain, 

(A-3-01 

(rN is positive definite,  AI is of the dhension of ky and x2 

of the dimexision of Ira> 

Then, combining Kfrc*&ffts laws w9th (A-7.I.b) and (A-4) 

and eliminating the linear t emhl  relations ( A - 4 )  we obtaft 

Let 

FYQ 



GH = 16-l + FcR R FiR] -' (pasftive defhite) 

% = [R -1 + FGR t G FGRIo1 (pcjsftive definite) 

Then, combining Kfrchhoff's laws With (A-f)  and elfmainat- 

lng the linear terarlnrl relations (#-Sa) we abtaPn 

(A-12) 

(A-133 



A .3 - Awpentatfon 

From F i g .  5 we note that when the excess element3 are 

augmented, the expressforts @-ut, 11, 12, 13) are Iscodiffed as 

follows g 

E c * e < +  Ec 



Transistor Multivfbrator 
Fig. 1 

c 

Low frequency transistar model 

E 
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Multivibrator with transistor model 

Fig. 3 
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A "Problem Gircuftn 

Figo 4 



O r i c r i n a l  Element Augmented Element 

e *- 2 CCNR 

VCNR 

C 

L % 6 (conductance) 

Augmentation 

Fig. 5 



INITIALIZE t, X ,  u 

1 
Integrate fast  equations 

one step forward 

Integra- slaw equatfons 

one step forward 

Flow Chart 

Fig. 6 
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